

​

GitTor​
DESIGN DOCUMENT

Team #15
Simanta Mitra - Client

Isaac Denning - Team Lead
Phu Nguyen - Web Application Lead

Cameron Gilbertson - CLI Application Lead
Tyler Gorton - Record Keeper

Jayson Acosta - Quality Assurance Lead
Seth Clover - Technical Research Lead

sdmay26-15@iastate.edu
https://sdmay26-15.sd.ece.iastate.edu

Revised: 11/3/2025

Executive Summary
A decentralized Git hosting platform where repositories are synchronized between users via a P2P
protocol using torrenting. The purpose of this application is to eliminate the issue of a single point
of failure, which affects other platforms such as GitHub and GitLab. The problems that users have
identified with this approach are as follows:

1.​ If the hosting platform goes down, there is no automatic fallback, meaning collaboration
on a project is completely halted until an alternative means of sharing is implemented. The
switch from one hosting platform to another can take anywhere from a few hours to a few
days, depending on the scale and complexity of a project.

2.​ When cloning a repository, the hosting platform can trivially add/remove any commits
from the top of the log without it being obvious. The "author" and commit messages can be
identical to the actual state of the repository, with the only difference being the repository
content and commit hashes. Something that, in large projects, is rarely checked in depth.

3.​ By default, Git uses SHA-1 for commit hashes, which has been broken. With enough time
and computing power, both of which Microsoft (the owner of GitHub) has, a commit hash
collision could be found to inject malicious code in the middle of a project's history. This
tactic would be even more challenging to identify than the last, since it can occur at any
point in the project's log, not just at the top, and the only difference would be the
repository contents.

4.​ Finally, when the hosting platform is your only means of collaboration, they are the judge,
jury, and executioner. Even if they don't change the state of your repositories, they can
decide to block your commits, make terrible commits in your name, or delete your
repositories (ideally, you would still have an instance on your machine).

To address all of these issues, we aim to minimize the power of the hosting platform as much as
possible. Instead of hosting your repository through GitHub or GitLab, you and everyone who
contributes to it will host the repository and share it with others via a P2P protocol. When sharing
the repository, your computer will seed it with a .torrent file. By sharing this .torrent file with
someone else, they will be able to leech the repository, downloading it directly from you.

This strategy clearly resolves issue one; even if your computer is off, others can seed the repository,
allowing anyone with the .torrent file to leech it. The solutions to two and three are less clear. The
.torrent file contains the hash of the contents, among other things. By using this to share
repositories, any peer that downloads the repository can verify that every byte matches the original,
no matter which seeder it came from. Lastly, we must address issue four. Since you are the one
hosting the repository (along with everyone else who has access to it), you are the judge, jury, and
executioner. You control the state of the repository, and it is up to the other contributors to decide if
they wish to leech your changes and work off of them.

However, this approach is not without some of its own concerns that need to be addressed. The
primary problem with this new approach is how to share changes to a repository among the
contributors. Since any change to the repository would result in a different .torrent file, the new file
needs to be shared with all contributors. While this can be done by any means, email, paper, or
even carrier pigeon, none of these would be convenient for GitTor users. Instead, we will create a

full-stack application that allows users to find, view, and obtain .torrent files for repositories. The
difference between this and a typical hosting platform is that its power is significantly limited, as it
has no control over the repository contents. Additionally, a simple, documented API will be
available, allowing alternatives to be easily created and switched to in minutes.

Another concern is that anyone with access to the repository could modify it, and there would be
no way to restrict write access to verified contributors other than through the full-stack application,
which we want to limit its power as much as possible. To ensure that only authorized individuals
can commit to a repository, a file in the repository will store the public GPG keys of those allowed to
commit, which can be used to verify the validity of the repository. To add another contributor, an
already verified contributor must add the new contributor's GPG key to the file. When a new GitTor
repository is initialized, it will initially contain only the creator's GPG key.

To summarize, the overall structure of this project is two parts:

1.​ A command-line tool that allows users to easily publish the new state of their repository
and seed it for other users to leech. The command-line tool will also enable users to
validate the commits via their GPG signatures and the valid contributor's keys file.

2.​ A full-stack application for users to publish their .torrent files to and see other users'
repositories with contents and pull requests. The application should also validate the
signatures when people publish a new .torrent file and start seeding the repository itself.

As for the tools we intend to be using:

●​ CLI:
○​ C for the source code
○​ Many C libraries, such as libcurl, glib, argp, etc.
○​ Unity C testing library with Gcovr coverage reports and Valgrind memory analysis
○​ CppLint, Clang-Tidy, and Clang-Format rules
○​ Pipeline for rule checks, tests, reports, and builds

●​ Full-stack App:
○​ API:

■​ Spring Boot Java source code
■​ JUnit integration and unit testing with JaCoCo coverage reports and

context profiling
■​ Autogenerated OpenAPI specification with documentation
■​ Checkstyle rules

○​ UI:
■​ Angular 20 source code
■​ Nginx runtime with reverse proxy to API
■​ Cypress end-to-end testing
■​ Tailwind styling with ZardUI component library
■​ Autogenerated API connection code via OpenAPI specification
■​ Prettier and ESLint rules

○​ A PostgreSQL relational database
○​ A MinIO Simple Storage Service
○​ Docker Compose for a Dockerized application stack
○​ Pipeline for rule checks, tests, reports, and builds

Learning Summary

Development Standards & Practices Used
List all standard circuit, hardware, and software practices used in this project.

List all the Engineering standards that apply to this project that were considered.

Summary of Requirements

List all requirements as bullet points in brief.

Applicable Courses from Iowa State University Curriculum
List all Iowa State University courses whose contents were applicable to your

project.

New Skills/Knowledge acquired that was not taught in courses
List all new skills/knowledge that your team acquired which was not part of your

Iowa State curriculum in order to complete this project.

Table of Contents
1. Introduction​ 7

1.1. Problem Statement​ 7
1.2. Intended Users​ 8

2. Requirements, Constraints, And Standards​ 8
2.1. Requirements & Constraints​ 8

2.1.1. Functional Requirements​ 8
2.1.2. Resource Requirements​ 9
2.1.3. Aesthetic Requirements​ 9

2.2. Engineering Standards​ 9
2.2.1. Importance​ 9
2.2.2. Relevant Standards​ 9

3. Project Plan​ 10
3.1. Project Management/Tracking Procedures​ 10
3.2. Task Decomposition​ 11
3.3. Project Proposed Milestones, Metrics, and Evaluation Criteria​ 11
3.4. Project Timeline/Schedule​ 12
3.5. Risks and Risk Management/Mitigation​ 12
3.6. Personnel Effort Requirements​ 13
3.7. Other Resource Requirements​ 14

4. Design​ 14
4.1. Design Context​ 14

4.1.1. Broader Context​ 14
4.1.2. Prior Work/Solutions​ 15
4.1.3. Technical Complexity​ 15

4.2. Design Exploration​ 15
4.2.1. Design Decisions​ 15
4.2.2. Ideation​ 16
4.2.3. Decision-Making and Trade-Off​ 16

4.3. Proposed Design​ 16
4.3.1. Overview​ 16
4.3.2. Detailed Design and Visual(s)​ 17
4.3.3. Functionality​ 18
4.3.4. Areas of Concern and Development​ 19

4.4. Technology Considerations​ 19
4.5. Design Analysis​ 20

5. Testing​ 20
5.1. Unit Testing​ 21
5.2. Interface Testing​ 21
5.3. Integration Testing​ 21
5.4. System Testing​ 22

5.5. Regression Testing​ 22
5.6. Acceptance Testing​ 22
5.7. Security Testing​ 22
5.8. User Testing​ 22
5.9. Results​ 22

6. Implementation​ 23
7. Ethics and Professional Responsibility​ 23

7.1. Areas of Professional Responsibility/Codes of Ethics​ 23
7.2. Four Principles​ 23
7.3. Virtues​ 24

8. Closing Material​ 24
8.1. Conclusion​ 24
8.2. References​ 24
8.3. Appendices​ 24

9. Team​ 25
9.1. Team Members​ 25
9.2. Required Skill Sets for Your Project​ 25
9.3. Skill Sets covered by the Team​ 25
9.4. Project Management Style Adopted by the team​ 25
9.5. Initial Project Management Roles​ 25
9.6. Team Contract​ 25

9.6.1. Team Procedure​ 25
9.6.2. Participation Expectations​ 26
9.6.3. Leadership​ 26
9.6.4. Collaboration and Inclusion​ 27
9.6.5. Goal-Setting, Planning, and Execution​ 27
9.6.6. Consequences for Not Adhering to Team Contract​ 28

List of figures/tables/symbols/definitions (This should be the similar to the
project plan)

1.​ Introduction

1.1.​ PROBLEM STATEMENT

Currently, software development on a team typically involves the following process:

1.​ Code is stored online through a platform like GitHub or GitLab
2.​ Members of the team who wish to contribute download the project via this platform
3.​ They make the desired changes and upload those changes back to GitHub or GitLab

There are many other aspects to modern software development, but for now, these are all that need
to be considered. This process seems simple and effective; however, it comes with a lot of trust and
reliance on the hosting platform, GitHub or GitLab. What if they stop working and we can no
longer share our code? What if they choose to block a team member from contributing? What if
they decide to change our team's code without our permission? For those who understand the
underlying Git protocol, they may believe that GitHub or GitLab cannot change a project's code
without it being obvious; however, this is far from the truth. There are actually multiple ways that
platforms like GitHub or GitLab can modify your team's code without it being obvious. These
methods can be hard or impossible to describe without first understanding the Git protocol, but for
those who already understand Git, these are the two methods:

1.​ The hosting platform can add/remove commits from the top of the log with the same
"author" and commit message as the original, yet with different content and hashes.

2.​ With sufficient time and computation, the hosting platform can find a SHA-1 commit hash
collision. With this, the hosting platform can inject an almost identical commit anywhere
in the log, making it even more challenging to find.

To answer the question, "What if my project's hosting platform does...?" Once it has been identified,
which may be easier said than done, the team behind this project would need to switch from their
current hosting platform to a different one to avoid this issue from continuing. For simple projects,
this can be done in a matter of minutes, making it almost a non-issue. However, for large-scale
systems, many aspects are tied to their hosting platform, not just the code itself. Because of this, a
switch from one hosting platform can take anywhere from hours to days. On many professional
projects, this amount of downtime without collaboration can cost hundreds of thousands of dollars
and is simply unacceptable.

Another issue with the current state of software development is that the online hosting platforms
can read your entire project. On most projects, this is not a concern; however, some have policies
preventing information from reaching third parties. In these cases, the solution is quite simple:
self-host an instance of GitLab. By doing so, your project never reaches the hands of a third party;
however, this can be quite the hassle and requires running a server constantly.

Our project aims to resolve all of these issues. Instead of hosting your project through GitHub or
GitLab, you and everyone on your team will host it and share it with others via a peer-to-peer
protocol. In this system, when a new team member wants to download the project, they can do so
directly from other team members. Even if one computer stops working or turns off, the others will
still be hosting the project, allowing it to continue being shared. Additionally, the identification for
projects, when downloading, will include a built-in digital fingerprint that can be used to verify that
the contents of the downloaded project have not been tampered with.

As for the issue of the hosting platform blocking a team member from contributing. In this new
approach, if everyone else in the team unanimously decides not to use the contributions of one
team member, then the result would be identical to what it was before. However, this seems like
more of an issue with the team itself rather than the system. Since team members are the ones
directly sharing the project, there is no external way to prevent someone within the team from
contributing.

1.2.​INTENDED USERS

This project can be used by anyone who wants to share their Git projects with others, and all of
them would have something to gain. However, there are three specific categories of users that our
project will be targeting:

Open-Source Teams: These are volunteer maintainers scattered across countries and time zones.
They need a free collaboration system that guarantees anyone with authorization can contribute.
They would benefit from our system because it is free, with the hosting workload distributed across
the network, and the ability to contribute is inherent to the system. While most hosting platforms
are currently free to use, this may change in the future, whereas our system cannot have a financial
aspect added.

Privacy-Focused Enterprises: These are corporations that handle sensitive information, protected by
policies such as HIPAA. They need a collaboration system that does not provide their information
to a third party. They would benefit from our system because projects can be shared directly
between team members without any third-party access. Unlike current online hosting platforms,
where, even when marked private, all the information can be read by the hosting platform itself,
which may violate policies.

High-Value Systems: These are applications with large customer bases and high expectations for
uptime. They need a collaboration system with a guarantee of no downtime, allowing updates at
any time; otherwise, a significant amount of money will be lost. They would benefit from our
peer-to-peer approach since each peer provides an independent layer of redundancy, preventing
collaboration from ever halting. Systems like GitHub do have redundancy in availability zones;
however, they are not independent and always have a chance of downtime if a bug is introduced.

2.​ Requirements, Constraints, And Standards

2.1.​REQUIREMENTS & CONSTRAINTS

2.1.1.​ Functional Requirements
●​ GitTor must share repositories via a P2P protocol
●​ GitTor must not cost any money for users to be able to access/run (constraint)
●​ GitTor must not share the contents of your repository with any third party, unless

configured by the user to do so (constraint)
●​ GitTor must be capable of leeching a repository even when only one seeders exist

(constraint)

●​ GitTor must be capable of verifying that the commits on a repository have come from
authorized contributors

●​ GitTor must use the GPG protocol for committer authentication
●​ GitTor must be able to share repositories without using the web application

2.1.2.​ Resource Requirements
●​ The web application must only require one dependency, Docker, to be runnable

(constraint)
●​ GitTor CLI must be functional on linux

2.1.3.​ Aesthetic Requirements
●​ GitTor web app must be usable and aesthetic on all web platform screen sizes (phone,

tablet, personal computer)
●​ GitTor web app must have a consistent design between pages
●​ GitTor web app must have dark-mode
●​ GitTor web app’s nested pages are limited to 3 pages deep (constraint)
●​ GitTor CLI must use a standard design help menu

2.2.​ENGINEERING STANDARDS

2.2.1.​ Importance

Arguably, the most significant importance of engineering standards is establishing an agreed-upon
means of collaboration. It's perfectly fine for an isolated system to use its own protocols, but as soon
as it needs to interact with other systems, both systems must have an agreed-upon means of doing
so. This problem is where engineering standards come in. They establish the agreed-upon means of
collaboration that can be applied to all systems. In this way, if a new system wants to collaborate
with all others, it only has to implement a few protocols, rather than a specific one for each system.

There are other benefits to engineering standards, like safety and usability, but for us programmers,
this is the most important aspect.

2.2.2.​ Relevant Standards
●​ RFC 9113 - Hypertext Transfer Protocol -- HTTP/2​

HTTP/2 is the second major version of the core communication protocol of the web.
Overall, this protocol defines how clients and servers exchange requests and responses on
top of the TLS or TCP protocol. This version intends to improve upon its predecessors by
being more efficient with its use of network resources and reducing latency. It accomplishes
this by updating the HTTP standard to support field compression concurrent exchanges on
the same connection.​
Our application utilizes HTTP/2 for all communication between the CLI and web
applications, as well as for requests between the UI and API.

●​ RFC 8446 - The Transport Layer Security (TLS) Protocol Version 1.3​
TLS is an encryption standard for client/server communication that prevents
eavesdropping, tampering, and message forgery from anyone but the two intended parties.
Version 1.3 is an improvement in that it is faster, utilizes a more secure cryptographic
method, and encrypts a greater portion of the initial handshake process.​

https://www.rfc-editor.org/rfc/rfc9113
https://www.rfc-editor.org/rfc/rfc8446

All our HTTP requests in GitTor will be built on top of TLS to provide necessary
encryption.

●​ RFC 4880 - OpenPGP Message Format
OpenPGP is a standard of internet encryption that includes tools like GPG. GPG specifies
how to generate a public-private key pair, create a digital signature of authenticity, and how
to validate those signatures.
Since the Git protocol already integrates GPG signatures, we will utilize this feature to
authenticate and authorize commits.

●​ OCI runtime-spec - Open Container Initiative Runtime Specification
This specification defines the configuration, execution environment, and lifecycle of a
container. It ensures that applications running inside a container have a consistent
environment, regardless of the machine on which they are running.
Since Docker runs on the Open Container Initiative, with layers of abstraction, we will rely
on this standard to host the web application images.

●​ OCI image-spec - Open Container Initiative Image Format Specification​
This specification defines the structure of an OCI image, which stores all the information
needed for the runtime to create, start, and stop a container running the application.​
Since Docker runs on the Open Container Initiative, with layers of abstraction, we will rely
on this standard to create the web application images.

●​ OCI distribution-spec - Open Container Initiative Distribution Specification
This specification defines how OCI images can be shared between systems through a push
and pull schema. It also describes how images can be identified through tags to facilitate
easier retrieval.
Since Docker runs on the Open Container Initiative, with layers of abstraction, we will rely
on this standard to retrieve images to build off of when creating our own.

●​ ISO/IEC 9075 - Information technology — Database languages SQL
This standard provides a set of rules for the Structure Query Language (SQL) used often in
relational databases. The standard mainly specifies what syntax, semantics, data structures,
and behavior that SQL should demonstrate. This provides consistency on what database
service or company is using SQL.
In our project, we use Postgres for our database, and that uses SQL, so we will need to
follow this standard to get uniform SQL.

●​ ISO/IEC/IEEE 29119 - Software and systems engineering — Software testing
This standard is meant to provide a framework for the structure of software testing.
Specifically, it aims to provide a clear layout for consistency, quality, and transparency for
how testing is planned, designed, and reported.
Since our project is entirely software-based. Nearly everything can be tested using this
standard as a guideline. We’ll use this standard to make comprehensive tests.

3.​ Project Plan

3.1.​PROJECT MANAGEMENT/TRACKING PROCEDURES

For our project, we are employing an agile management style to deliver working software early and
often, enabling us to refine features and respond quickly to issues as they arise. This style also

https://www.rfc-editor.org/rfc/rfc4880
https://specs.opencontainers.org/runtime-spec/
https://specs.opencontainers.org/image-spec/
https://specs.opencontainers.org/distribution-spec/
https://www.iso.org/standard/76583.html
https://www.iso.org/standard/81291.html

ensures that both our CLI and web application evolve together as new requirements and challenges
emerge.

To track our progress, we will use a GitHub Kanban board, which integrates well with our GitHub
repositories, linking branches and pull requests. This Kanban board includes task stages: draft,
to-do, in progress, in review, and done.

3.2.​TASK DECOMPOSITION

To solve the problem at hand, we will continuously break down the development of GitTor into
multiple tasks and subtasks, with interdependencies that enable smooth collaboration among team
members. Due to our Agile structure, we don't
currently have our project decomposed into all of
its tasks and subtasks. Instead, this will be done
iteratively throughout the development cycle.

An example of this task decomposition can be
seen in the implementation of our configuration
file parser in the CLI. Since the parser will utilize
the Glib library, this task depends on adding Glib,
which is a subtask of adding necessary libraries.
There also needs to be a way to call the
configuration file parser, which requires a
command-line parser that uses the argp library.
Once again, this library is a subtask of adding
necessary libraries.

3.3.​PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Although we do not have a complete task decomposition due to our agile structure, we have laid out
the necessary milestones for our project.

●​ Foundations - Build out the project environments with all known dependencies
integrated. This requires a command-line parser for the CLI, as well as the addition of
dependent libraries. The web application requires a connected Docker Compose structure
with all containers collaborating properly.

●​ Seeding and Leeching - The API must enable the upload and retrieval of torrent files, and
the CLI must utilize these endpoints to seed and leech the repository properly. The UI must
be sufficiently developed to allow users to access repositories.

●​ Security - The CLI and API integrate GPG checks to validate that all commits originate
from authorized contributors. The web application enables different levels of repository
visibility. The UI continues to be developed with additional functionality, including the
ability to view repository contents online.

●​ Polish and Usability – The CLI and web application have been refined to ensure that all
required functionalities are implemented effectively, providing a smooth and user-friendly
experience.

3.4.​PROJECT TIMELINE/SCHEDULE

3.5.​RISKS AND RISK MANAGEMENT/MITIGATION

Risk Probability Severity Mitigation Strategy

CLI Torrent Functionality

Torrent library incompatibility 0.2 High Research and experiment with
multiple torrent libraries

Performance issues with large
repositories

0.4 Medium Implement performance
benchmarks during early
development.
Investigate optimization techniques

API Torrent Support

API Performance Bottleneck 0.3 Medium Consider scaling strategies (caching
layer, load balancing)

Incompatibilities with CLI 0.25 Medium Establish versioning strategy

UI Repository Pages

UI/UX Complexity 0.5 High Create wireframe plan before
implementation

GPG Checks in CLI

Unexpected Integration
Complexity

0.4 High Prototype GPG integration early

GPG Support in Web App

Secure Key Handling in a Web
Environment

0.6 High Follow strict security protocols for
server key storage and handling

3.6.​PERSONNEL EFFORT REQUIREMENTS

Major Task High-Level Description Related Sub Tasks* Total Time
Required

Brainstorm Beginning Stages of the GitTor
project. Laid out our project
design

- Come up with ideas
- Pitch our ideas to
faculty

20 hours

Set up Project
Management

Setting up our project
environments

- Set up a GitHub
Repository
- Set up our Kanban and
Discord

15 hours

Setup Projects Setting up the framework for
GitTor

-Setting up the
framework for the CLI
-

30 hrs

CLI Torrent
Functionality

Develop a working CLI that can
functionally work as a git service

-Research Torrent
Integrations
- Torrent Demo

100 hrs

API Torrent
Support

Develop a working API to be able
to call our CLI

- Create a design for the
API with methods
- Implement the design
to work with our CLI

60 hrs

UI Repository
Pages

Develop a working UI for our
repository for the WebApp

- Choosing a UI
- Implementing basic
functionality for users
to use the UI Repository
Page (such as login)

90 hrs

Minimum
Functioning
Implementation

System Integration between the
UI and the CLI.

- Have a functioning CLI
- Have a functioning
WebApp
- Integrate the CLI and
WebApp together

GPG Checks in
the CLI

Enable GPG Checks for the CLI *TBD 70 hrs

GPG Support in
the WebApp

Enable GPG Support for the
WebApp

*TBD 60 hrs

Major Features in
Web App

Complete major features to fully
complete our WebApp

*TBD 120 hrs

Polish CLI Finish the CLI while creating
readable and maintainable code

- Complete the CLI
- Add READMEs
*TBD

80 hrs

Polish Web App Finish the WebApp while
creating readable and
maintainable code

- Complete the WebApp
- Add READMEs
*TBD

70 hrs

Documentation Create final documentation
pieces

- Create a
documentation
explaining GitTor in
either an extra
document or as a Wiki

30 hrs

*Some of the sub-related tasks have not been concretely laid out. Especially for the second-semester
major tasks.

3.7.​OTHER RESOURCE REQUIREMENTS

Our project is entirely software-based, and we don’t expect to require any physical resources.

4.​ Design

4.1.​DESIGN CONTEXT

4.1.1.​ Broader Context

The GitTor project aims to give programmers a decentralized, secure, and robust way to share their
code with others. GitTor is aimed towards programmers as an alternative to other major repository
hosting platforms such as GitHub and GitLab. But we aim to solve the need for a centralized server
owned by a large corporation like Alphabet Inc. The removal of the centralized server also creates
layers of redundancy and removes a single failure point, which many other repository hosting sites
suffer from.

Area Description Examples
Public health,
safety, and
welfare

Our project needs to provide a secure
way for users to store and share their
code repositories. This will provide peace
of mind that their code is safe and secure.

●​ HTTPS communication
between the server and
users

●​ P2P secure
communications between
users

●​ GPG Checks for Repository
Editing

Global, cultural,
and social

Our project is open source, so this
provides users the ability to modify and
tailor our product to their specific needs.
We believe this better aligns with the
beliefs of future users.

●​ Open Source Software
●​ Decentralized Network

Environmental N/A N/A
Economic Our project is an open-source software

product. This will make it available to
hobbists as well as professionals.

●​ Our product will be free to
use

4.1.2.​ Prior Work/Solutions

Our project is an alternative to common repository hosting platforms such as GitHub [1] and
GitLab. Ours will be a decentralized version that will use P2P connections to share files. According
to Coursera, “P2P networks are useful for applications that require decentralized collaboration,
resource sharing, or secure and transparent transactions.” [2]. Using this protocol will prevent the
need for a centralized server that needs to be controlled and managed.

One project that is similar to what we are doing is a product called Radicle [3]. Radicle is also a
decentralized P2P repository sharing platform. Our project is different from Radicle because we are
going to have extra features, like a usable GUI that the user can use instead of the CLI. Also, our
project will have a webpage that will provide users with a different way to look over their
repositories. Also, GitTor will have Windows support, unlike Radicle.

4.1.3.​ Technical Complexity

GitTor’s multi-layered architecture involves multiple domains of software and computer
engineering across the CLI and web application components, each leveraging a unique set of
principles. The CLI application requires low-level systems programming in C to implement
BitTorrent protocol integration, cryptographic verification using GPG signatures, and persistent
background service management for seeding operations. The web application employs distributed
systems principles through its service-based architecture with loosely coupled components: an
Angular frontend implementing reactive UI patterns, a Spring Boot API handling RESTful state
management, PostgreSQL managing relational data, and MinIO providing scalable object storage.
Additionally, the security model itself presents considerable challenge, as it replaces traditional
centralized access control with a cryptographic chain of trust using GPG signatures, eliminating a
single point of failure found in current centralized platforms.

4.2.​DESIGN EXPLORATION

4.2.1.​ Design Decisions

A few key design decisions have significantly shaped the GitTor project architecture. First, we chose
to implement the CLI in C over higher-level languages to minimize resource overhead and
maximize compatibility with existing Git tooling, though this increased development complexity.
Second, we decided to separate the seeding functionality into a persistent background service
rather than embedding it in the CLI process, which enables continuous repository seed availability
even when users aren’t actively running commands but adds inter-process communication
challenges. Third, we adopted Docker Compose for the web application deployment to ensure
consistent environments and simplify scalability, though this introduced a dependency that some

developers may find cumbersome compared to native installation methods. Each decision involved
trade-offs between usability, performance, and implementation difficulty that we evaluated based
on our target user needs and project constraints.

4.2.2.​ Ideation

Several distinct options were evaluated against the functional and technical needs outlined
previously. We considered embedding seeding as a periodic operation within the CLI, implementing
a persistent background service to handle seeding independently of the CLI, running seeding
actions at fixed intervals through scheduled system services such as cron or systemd, requiring
users to manually initiate seeding via the CLI, and offloading the seeding operations to a web server
that would forego the project’s Peer-To-Peer principles. Each approach was weighed based on its
feasibility of implementation and user convenience, while considering maintaining a decentralized
architecture and managing development complexity.

4.2.3.​ Decision-Making and Trade-Off

The qualitative differences between the brainstormed options rested on four main factors:
availability, user effort, complexity, and the ability to maintain a decentralized platform. The
analysis showed that persistence, which is the ability for seeding operations to always be available,
was integral for GitTor to be a reliable Peer-To-Peer repository distribution system. Reducing user
effort was also key, since requiring manual intervention or complex setup would deter users from
switching from other established platforms that do not suffer from those problems. Accepting a
slightly higher degree of implementation complexity was deemed justifiable if it allowed for other
categories of consideration to be accounted for, because the current scope of the project has allowed
for an expansion of its expectations after discussion with our project advisor and client. Although
embedding seeding in the CLI or relying solely on scheduled system services would be easier for
user comprehension, they either lacked persistence or introduced more work for users or increased
the potential for user error. Centralizing seeding in the web application directly opposes the
project’s core goals, so it was also dismissed. Based on these considerations, we chose to implement
seeding as a persistent background process independent of the CLI. This solution introduces greater
technical complexity but aligns best with the open-source, peer-powered vision for the project.

4.3.​PROPOSED DESIGN

4.3.1.​ Overview

GitTor is built from two main parts: a command-line tool and a web application. The command-line
tool allows users to share repositories directly. The web application helps users find the latest
repository states. The command-line tools communicate over a Peer-To-Peer BitTorrent protocol,
while the web application connects using HTTPS through a REST API.

The command-line tool depends on a parser to read user input and trigger specific operations. Each
operation manages different aspects of repository sharing, configuration, and authentication. The
design focuses on keeping the tool lightweight and direct. It supports sharing repositories over a
Peer-To-Peer network without unnecessary features. The goal is to provide essential functionality
without overcomplicating the user experience.

The web application delivers a broader experience for users. It enables users to search for
repositories, explore code bases, and view pull requests. The front end is built with Angular and
hosted on Nginx, which also proxies requests to the API. The API runs with Spring Boot and
connects to a PostgreSQL database to handle structured data. For larger or unstructured data, such
as repository previews, the system uses Minio Simple Storage Service.

All components run inside Docker containers managed with Docker Compose. This setup isolates
services, simplifies deployment, and improves scalability. The design creates a clear separation
between the user interface, API, and storage, ensuring the system remains organized and efficient.

4.3.2.​ Detailed Design and Visual(s)

To understand the design of GitTor, we must start at a high
level and gradually work our way down through the
components. At the top level, GitTor can be thought of as
two parts: a command-line tool that allows users to share
repositories, and a web application that enables users to
find the latest state of repositories. Communication
between different command-line tools will be facilitated via
a Peer-To-Peer BitTorrent protocol, and communication
with the web application will be over HTTPS with the REST
API.

Within the command-line tool,
the true complexity of the
application begins to reveal
itself. Firstly, a command-line
parser is used to interpret the
user's input and invoke the
necessary functionality, which
has been split into multiple
components. The most
important of these
components are the leech,
seed, and service manager.

●​ The leech component determines the latest state of the repository using the web API,
retrieves it from other contributors, and then instructs the seeder service to begin seeding.

●​ The seed component updates the state of the local repository according to the current
changes, tells the seeder service to start seeding this new state, and then informs the web
API of the state.

●​ The service manager starts and stops the seeder service, which is a separate process from
the command-line tool.

To understand why we need this separate process, we must first realize that the basic command-line
program must start and stop regularly as users call it. However, to properly seed repositories on a
Peer-To-Peer network, there must be a process actively seeding at all times.

Along with all these components of GitTor's command-line tool, there are many others for helping
manage custom configurations, repository initialization, and developer authorizations. This design
provides only the necessary functionality for sharing repositories over a Peer-To-Peer BitTorrent
protocol via a command-line tool, as the extra layers of complexity are not entirely needed; They're
more of a nice-to-have.

After reviewing the design for the command-line tool, one might assume that the UI must only
support retrieving, uploading, and updating repositories, as well as maybe some form of
authentication. If this were the case, the API could be implemented in only a few lines of code.
However, this would not provide a well-rounded experience for most of our user base, who require
the ability to find others' repositories, navigate through their code base, and view pull requests. For
this, we need a much more stable design than simply a few lines of code.

The design of our application involves an Angular
user interface hosted on top of Nginx, which will
also serve as a proxy to the API. As for the API, it
will run with Spring Boot to manage requests and
establish a connection to our PostgreSQL
relational database. However, not all our data will
be structured or compact, like storing the
repositories needed for previewing, so there will
be a Minio Simple Storage Service for the API to
offload this data to. This design involves a
significant amount of structure and networking
to manage, so we will utilize Docker Compose to host all these services within their own containers.

4.3.3.​ Functionality

The functionality of GitTor can be described in stages. For this description, we will assume two
users exist, Alice and John.

●​ Alice initializes a new repository on her system.
●​ Alice makes a few Git commits, adding code and authorizing other contributors, such as

John.
●​ Alice tells her GitTor CLI to seed the repository, which in turn causes a sequence of events:

○​ Alice's GitTor CLI tells Alice's seeder service to begin seeding the repository.
○​ Alice's GitTor CLI notifies GitTor Web of the new repository and how to torrent it.
○​ GitTor Web begins to leech the repository, allowing it to display a preview of the

code.
●​ John finds Alice's new repository on GitTor Web and decides he wants to contribute to it.
●​ John tells his GitTor CLI to leech Alice's repository.
●​ John adds Git commits with even more code.
●​ John tells his GitTor CLI to seed the new state of Alice's repository, which again causes the

same sequence of events:
○​ John's GitTor CLI tells John's seeder service to begin seeding the repository.
○​ John's GitTor CLI notifies GitTor Web of the new state of the repository and how to

torrent it.

○​ GitTor Web begins to leech the new state of the repository, allowing it to display a
preview of the code.

●​ Alice sees this change, and decides to leech it onto her machine.

4.3.4.​ Areas of Concern and Development

The current design addresses all core function requirements. The P2P BitTorrent protocol ensures
decentralized repository sharing without third-party dependencies, and the GPG signature
verification provides cryptographic authentication for commits.

The first concern for product delivery is the seeder service reliability. The seeder service must
remain stable across system reboots and handle issues such as network interruptions, a lack of disk
space, and concurrent seeding of repositories. Failures with this service undermine the value of
using GitTor. To address this concern, we will implement comprehensive error handling and
automatic recovery, along with integrations for automatic restart on failure.

The second concern is with GPG verification. Validating commit signatures across large repository
histories could introduce latency. We need to ensure that the verification process scales efficiently
and does not create a bottleneck during leeching. To address this concern, we plan to implement
incremental verification that caches previous results and only validates newer commits.

4.4.​TECHNOLOGY CONSIDERATIONS

CLI Technologies

C Programming Language

●​ Strengths: Low-level control, minimal runtime overhead, excellent compatibility with
existing Git tooling and system APIs, widely available on Linux systems

●​ Weaknesses: Manual memory management increases development complexity and bug
potential, fewer built-in abstractions compared to higher-level languages, steeper learning
curve for team members less experienced with systems programming

●​ Trade-offs: We chose C over Python/Rust to minimize resource consumption and to
maximize performance for large repository operations. The development complexity is
justified by the performance requirements.

GPG/OpenPGP Libraries

●​ Strengths: Industry-standard cryptographic verification, Git already uses GPG signatures, so
integration is simpler

●​ Weaknesses: API complexity, key management requires careful error handling

Web Application Technologies

Angular (Frontend)

●​ Strengths: TypeScript provides type safety, component-based architecture, strong
ecosystem with Angular CLI and testing tools

●​ Weaknesses: Steep learning curve, larger bundle sizes compared to lighter frameworks

●​ Trade-offs: Choose Angular over React/Vue for its opinionated structure and built-in
features. The bundle size concern is acceptable given our target user base has reliable
internet.

Spring Boot (Backend API)

●​ Strengths: Mature Java ecosystem, excellent dependency injection, built-in security
features, strong database integration

●​ Weaknesses: JVM memory overhead, potentially slower startup times
●​ Alternative Considered: Express.js would have lighter resource usage, but Java's type system

and tooling better support our API reliability requirements.

4.5.​DESIGN ANALYSIS

So far, the groundwork for GitTor has been laid by creating the CLI and web-app repos with
foundational implementations.

We have built the basic API, database, testing, general layout, theming, and authentication for the
web-app portion. What we have created for the web-app design is working as intended, and we are
still on track to continue following the original design. We haven't built important pages(including
the homepage) and API to CLI compatibility. Our plans for the web-app are to implement these
features, including figuring out the intricacies of getting leeching working.

For the CLI, we've built the command-line parser, testing, and have begun the process of torrenting
repos. What we have created for the CLI design is working as intended, and we are still on track to
continue following the original design structure. We haven't added seeding and leeching
repositories yet, and the plan is to get that done soon to unblock other work areas. Other than that,
the CLI plans to implement GPG key validation for each commit, which at this point looks feasible.

Overall, the two projects are steadily progressing according to the design set, and we plan to
continue with the aid of our tools we have set up and the designs we have laid out.

5.​ Testing
For our application, testing is one of our highest values, as it ensures the system is functioning
correctly with minimal to zero manual effort. However, since our application is split into three parts
—CLI, API, and UI —we need a different test suite for each, tailored specifically to that part. While
each of these tests will function differently, their overall goal will be the same: to ensure that the
requirements for the developed feature are met. The sections below will outline the various forms
of testing we use and explain how they are best suited for each part of our application.

For each new task on our Kanban board, we will mark the form of testing that needs to be
implemented and guarantee that those tests have been created and passed before merging. This will
help us keep track of our project and ensure old features aren't unintentionally broken in the
implementation of a new feature.

5.1.​UNIT TESTING

In general, our project avoids unit testing where possible, as the more accurate the tests are in
simulating the whole environment, the better they are. This isn't to say we don't have unit testing,
as it's often the best option available; however, when integration testing is a viable alternative, it will
be used on our project.

Our CLI is an excellent case where unit testing is the best option available. Developing high-level
tests, such as integration tests, is nearly impossible for low-level languages like C, on which the CLI
is built. For this reason, the CLI's tests are written in a framework called Unity, which got its name
because it was designed around unit testing. While our tests here check the function's output, they
are primarily focused on preventing memory leaks and infinite loops more than anything else. To
handle this, our tests are run on top of Valgrind, which analyzes the memory usage and detects any
errors.

5.2.​INTERFACE TESTING

As our project evolves, we will continue to develop additional interfaces and tests for these
interfaces. However, as of now, our best example of interface testing comes from our Simple Storage
Service. The API requires storing large files and/or unstructured data, and that's where the Simple
Storage Service (S3) comes in. It's an interface that allows the program to upload, download, or
delete these objects.

The only complication is that there are actually three different S3 implementations, depending on
the runtime: in-memory, in files, or in MinIO. In the future, this could even expand to include
Amazon S3 as well.

Since we don't want the program to run differently between each of the runtimes, we need a test
suite to ensure that none of the implementations function differently from the others, at an
interface level. This test suite doesn't even guarantee that they function "properly" it just checks
that they all function the same when provided the same input. In creating this, we actually found
some cases where specific characters were allowed in one implementation but not in another, which
we later fixed.

5.3.​INTEGRATION TESTING

The most important area for us to do proper integration testing is the API. It is necessary to ensure
that all controllers function as expected, which can be extremely tedious to do manually especially
as the system grows and changes. For this reason, almost all of our API tests are examples of
integration tests.

Developed using JUnit, the tests send REST requests to the controller layer, which calls the service
layer, repository layer, and finally the database/S3. For these tests to run correctly, all pieces of the
API must be integrated and running together. However, most of the time, we don't want to set up an
entire PostgreSQL database or MinIO instance to test the application. In these cases, our system
simply replaces them with an H2 database and an in-memory S3.

5.4.​SYSTEM TESTING

When possible, system testing in the form of End-to-End testing is the golden standard, as it
ensures your entire system can collaborate effectively to achieve the desired result. In the context of
our application, this is most achievable with the web user interface and its interaction with the API.

To create these tests, we will be using Cypress, which runs the entire web user interface and
interacts with it as an automated user ensuring the proper information appears on screen. This
approach provides confidence that both the frontend and backend are functioning together
correctly under real-world conditions.

5.5.​REGRESSION TESTING

To ensure that new changes do not break existing features, the entire test suite must be run, which
can be pretty tedious. To manage this, we have set up Github workflows which run all our tests for
each new commit to the repository, as well as other checks. For a pull request to get merged into the
main branch, all checks must pass. Along with ensuring new changes do not break existing features,
it also verifies that the latest tests created with this feature also pass.

5.6.​ACCEPTANCE TESTING

For a new feature to be added to our system, it must go through a pull request, which first verifies
that all automated checks pass. After that, however, it must also be reviewed by another team
member, who can either approve it or request changes. Only when all checks pass and another team
member has approved it, can it be merged into the main branch.

Every two weeks, our team meets with the client to showcase all the changes made to the system. At
this time, if any new feature has any requested modifications, a new issue will be created on the
Kanban board, and the cycle continues.

5.7.​SECURITY TESTING

For every system, security testing appears in a different form. For our system, and given our
resources, the best form of security testing we can realistically have is primarily static code analysis.
This process searches our codebase for common security vulnerabilities as well as other issues,
which we have implemented in some form for each environment: CLI, API, and UI. As mentioned
before we are using Valgrind to perform memory analysis during our CLI testing which can also
help prevent many security issues.

In the end, however, no form of security testing is complete, and there will always be potential for
security threats, even if it's just built into the libraries the project depends on. Our system could
always use more security testing, but at some point, we have to call it and focus our efforts
elsewhere.

5.8.​USER TESTING

Once our system reaches a minimum viable product we will move towards user testing to learn
what needs to be improved and refined. Since our project's intended users are limited to software
developers, so too will our user testing. We will gather up friends and other software developers to
use our application and learn what gives them struggle, confusion, etc.

Once we have collected this data, we can work towards creating a plan to solve these problems to
the best of our ability and creating future tasks. Improvement is a never ending process, so we may
need to go through multiple rounds of user testing before finally reaching a design we are happy
with.

5.9.​RESULTS

Currently, we have one Cypress test in the UI, 22 Unity tests in the CLI, and 304 JUnit tests in the
API. The discrepancy between the API and the UI is because the API was created from a template by
one of our team members, which we were able to build upon immediately unlike the UI which
needed to be developed from the ground up. However, we expect that number to grow to a
respectable size soon.

Our coverage reports indicate 100% coverage in the CLI and 94% in the API. The last 6% of the API
consists mainly of unimplemented utility functions and almost unreachable error handlers.

Due to our extensive testing, we have identified only one bug to make it to main, which was caused
by an inconsistency between mobile Safari's rendering and that of all other browsers. The
remaining issues marked as bugs are due to problems in our development environment rather than
the product itself.

6.​ Implementation
Describe any (preliminary) implementations of your design thus far. Support any general,
descriptive text with relevant images. If your project has inseparable activities between design and
implementation, you can list them either in the Design section or this section.

7.​ Ethics and Professional Responsibility
Use this section to describe your considerations of engineering ethics and professional
responsibility. Most importantly how are you defining engineering ethics and professional
responsibility in the context of your project and what steps are you taken to ensure ethical and
responsible conduct. Each section references one type of ethical/professional responsibility
considerations. You may also use this introductory section to note any overarching ethical
philosophy among your team.

7.1.​AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS

This discussion is with respect to the paper by J. McCormack and colleagues titled “Contextualizing
Professionalism in Capstone Projects Using the IDEALS Professional Responsibility Assessment”,
International Journal of Engineering Education Vol. 28, No. 2, pp. 416–424, 2012

Pick one of IEEE, ACM, or SE code of ethics (all linked in class slides). Create a table, like Table 1 in
the McCormack et al. (2012, pg. 418)) paper, with the following columns representing: Area of
Responsibility (from the paper), Definition (in your own words), Relevant Item from Code of Ethics
(from the Code of Ethics you selected, and description of how your team has interacted with that
area of professional responsibility or adhered to that code during your project thus far.

In text below the table, describe one area in which your team is performing well. Describe what
your team is doing and how that signifies strong performance. Also describe one area in which your

team needs to improve. Describe what your team is currently doing and what it should do in the
future to improve.

7.2.​FOUR PRINCIPLES

Create a table with rows for each broader context area (see Section 4.1.1) and columns for each of
the four principles (beneficence, nonmalificence, respect for autonomy, and justice; see Beauchamp,
2007). Within the table, identify at least one way each of the four principles applies to each of the
broader context areas. Some principle-broader context connections might be more prominent than
others, but you should be able to identify something for each table cell. Note: Your design may end
up negative or neutral in some cell. For example, your product might perform poorly in
environment-nonmaleficence because it utilizes natural resources without a positive/mitigating
effect.

Below the table, note one broader context-principle pair that is important to your project. Briefly
describe the benefit in that area you are working towards and how you will ensure it. Also note one
broader context-principle pair in which your project/end design is or will be lacking. Describe
either (a) how this negative is overcome by other positives in other areas of the project/design or
(b) what your team must do to improve in this area.

7.3.​VIRTUES
List and define at least three virtues that are important to your team. Describe what you will do or
have done as a team to support these virtues among all team members.

Each team member should also answer the following:

●​ Identify one virtue you have demonstrated in your senior design work thus far? (Individual)
o​ Why is it important to you?
o​ How have you demonstrated it?

●​ Identify one virtue that is important to you that you have not demonstrated in your senior
design work thus far? (Individual)

o​ Why is it important to you?
o​ What might you do to demonstrate that virtue?

8.​ Closing Material

8.1.​CONCLUSION

Summarize the work you have done so far. Briefly re-iterate your goals. Then, re-iterate the best
plan of action (or solution) to achieving your goals. What constrained you from achieving these
goals (if something did)? What could be done differently in a future design/implementation
iteration to achieve these goals?

8.2.​REFERENCES

List technical references and related work / market survey references. Do professional citation style
(ex. IEEE). See link:
https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf

[1] GitHub, “About GitHub and Git,” GitHub Docs, 2024.
https://docs.github.com/en/get-started/start-your-journey/about-github-and-git

[2] C. Staff, “What Is a Peer-to-Peer Network?,” Coursera, Oct. 24, 2024.
https://www.coursera.org/articles/peer-to-peer

[3] “Radical,” Radicle.xyz, 2025. https://radicle.xyz/ (accessed Oct. 28, 2025).

8.3.​APPENDICES

Any additional information that would be helpful to the evaluation of your design document.

If you have any large graphs, tables, or similar data that does not directly pertain to the problem but
helps support it, include it here. This would also be a good area to include hardware/software
manuals used. May include CAD files, circuit schematics, layout etc,. PCB testing issues etc.,
Software bugs etc.

9.​ Team
Complete each section as completely and concisely as possible. We strongly recommend using
tables or bulleted lists when applicable.

9.1.​TEAM MEMBERS

9.2.​REQUIRED SKILL SETS FOR YOUR PROJECT

(if feasible – tie them to the requirements)

9.3.​SKILL SETS COVERED BY THE TEAM

(for each skill, state which team member(s) cover it)

9.4.​PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

Typically, Waterfall or Agile for project management.

9.5.​INITIAL PROJECT MANAGEMENT ROLES

(Enumerate which team member plays what role)

9.6.​TEAM CONTRACT

Team Members:

1.​ Jayson Acosta

https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf

2.​ Seth Clover
3.​ Isaac Denning
4.​ Cameron Gilbertson
5.​ Tyler Gorton
6.​ Phu Nguyen

9.6.1.​ Team Procedure

9.6.1.1.​ Day, time, and location (face-to-face or virtual) for regular team meetings:

We will meet every Thursday in the library or virtually, depending on the needs of the meeting.

9.6.1.2.​ Preferred method of communication updates, reminders, issues, and scheduling (e.g.,
e-mail, phone, app, face-to-face):

Our primary form of communication will be through a Discord server.

9.6.1.3.​ Decision-making policy (e.g., consensus, majority vote):

Decisions will be made by majority vote.

9.6.1.4.​ Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be
shared/archived):

Audio recordings will be taken for each meeting and shared on some cloud storage like CyBox.

9.6.2.​ Participation Expectations

9.6.2.1.​ Expected individual attendance, punctuality, and participation at all team meetings:

Individuals will notify the rest of the team if they know they are not going to be available for a
meeting.

9.6.2.2.​ Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:

Individuals will notify the rest of the team if they suspect that they won't be able to complete their
tasks by the original expected date.

9.6.2.3.​ Expected level of communication with other team members:

Individuals are expected to communicate with other team members when available.
Communication will be done through the GitTor Discord server, as well as during class.

9.6.2.4.​ Expected level of commitment to team decisions and tasks:

Individuals are expected to contribute to decisions and tasks when available. Each individual will
take responsibility to assign themselves a ticket on the kanban board and ask for help or assist
other team members where appropriate.

9.6.3.​ Leadership

9.6.3.1.​ Leadership roles for each team member (e.g., team organization, client interaction,
individual component design, testing, etc.):

Team Lead - Isaac Denning

Web Application Lead - Phu Nguyen
CLI Application Lead - Cameron Gilbertson
Record Keeper - Tyler Gorton
Quality Assurance Lead - Jayson Acosta
Technical Research Lead - Seth Clover

9.6.3.2.​ Strategies for supporting and guiding the work of all team members:

There is a questions channel on the Discord server that team members can post to.

9.6.3.3.​ Strategies for recognizing the contributions of all team members:

All tasks will be put onto our GitHub project here, picked up by team members, and tagged as
“Done” when the task is completed.

9.6.4.​ Collaboration and Inclusion

9.6.4.1.​ Describe the skills, expertise, and unique perspectives each team member brings to the
team:

Jayson Acosta - I have worked on many full-stack applications, and have used C in many of my
classes. I will be bouncing around with the CLI and the Web Application, but my primary focus will
be on the web application

Seth Clover - I bring project experience working with full-stack web apps using TypeScript,
backend development using Java with Springboot, and low-level systems programming with C++
and C. I will be spending likely an equal amount of time between the CLI and Web App, with a
focus on researching and prototyping.

Isaac Denning - I have worked on a few full-stack applications, as well as have a lot of C
experience. As the person who formulated the original idea for this project, I give the perspective of
envisioning the project in its entirety.

Cameron Gilbertson - I have experience using C, C#, C++, and Java through my classes and
internships. Based on my experience I will be working mostly on the CLI portion of this project.

Tyler Gorton - My experiences have ranged from full-stack web development to low-level graphics
programming, and I am comfortable with JavaScript/TypeScript, Java, C, C++, and Rust. I expect to
work on both the CLI and the web app, with a slight focus on the web app.

Phu Nguyen - Full-stack experience through internships as well as experience with C through
classes and personal projects. I will focus more on the web-app part, as that is where I have the
most experience.

9.6.4.2.​ Strategies for encouraging and support contributions and ideas from all team members:

Team members can make suggestions in Discord, create their own tasks, make comments on tasks,
and request changes on Pull Requests.

9.6.4.3.​ Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a
team member inform the team that the team environment is obstructing their opportunity
or ability to contribute?):

If an individual has any conflicts within the team, they may either: bring the issue up to the team
and see if there is a solution that can be agreed upon, or bring the issue up to TAs or professors of
the class to see if they can be of assistance. If no solution is found when bringing the issue up to the
team, TAs or professors will be brought in to help.

9.6.5.​ Goal-Setting, Planning, and Execution

9.6.5.1.​ Team goals for this semester:

Get a functional system that accomplishes the core functionality. It does not have to do everything,
it does not have to be pretty, and there may be bugs.

9.6.5.2.​ Strategies for planning and assigning individual and team work:

Tasks will be created on our GitHub project here, and team members will be able to self-assign
which tasks they wish to work on.

9.6.5.3.​ Strategies for keeping on task:

Our weekly meetings will go over goals for tasks to be completed within the upcoming week.

9.6.6.​ Consequences for Not Adhering to Team Contract

9.6.6.1.​ How will you handle infractions of any of the obligations of this team contract?

Infractions will first attempt to be handled within the team; however, if the issue continues, TAs or
professors will be brought in to help.

9.6.6.2.​ What will your team do if the infractions continue?

Contact TAs or professors to see if they can help or have any advice.

a) I participated in formulating the standards, roles, and procedures as stated in this contract.
b) I understand that I am obligated to abide by these terms and conditions.
c) I understand that if I do not abide by these terms and conditions, I will suffer the
consequences as stated in this contract.

1) Jayson Acosta_____________________________________ DATE 09/14/2025

2) Isaac Denning____________________________________ DATE 09/15/2025

3) Seth Clover_______________________________________ DATE 09/15/2025

4) Phu Nguyen______________________________________ DATE 09/16/2025

5) Cameron Gilbertson_______________________________ DATE 09/16/2025

6) Tyler Gorton______________________________________ DATE 09/16/2025

	1.​Introduction
	1.1.​PROBLEM STATEMENT
	1.2.​INTENDED USERS

	2.​Requirements, Constraints, And Standards
	2.1.​REQUIREMENTS & CONSTRAINTS
	2.1.1.​Functional Requirements
	2.1.2.​Resource Requirements
	2.1.3.​Aesthetic Requirements

	2.2.​ENGINEERING STANDARDS
	2.2.1.​Importance
	2.2.2.​Relevant Standards

	3.​Project Plan
	3.1.​PROJECT MANAGEMENT/TRACKING PROCEDURES
	3.2.​TASK DECOMPOSITION
	3.3.​PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA
	3.4.​PROJECT TIMELINE/SCHEDULE
	3.5.​RISKS AND RISK MANAGEMENT/MITIGATION
	3.6.​PERSONNEL EFFORT REQUIREMENTS
	3.7.​OTHER RESOURCE REQUIREMENTS

	4.​Design
	4.1.​DESIGN CONTEXT
	4.1.1.​Broader Context
	4.1.2.​Prior Work/Solutions
	4.1.3.​Technical Complexity

	4.2.​DESIGN EXPLORATION
	4.2.1.​Design Decisions
	4.2.2.​Ideation
	4.2.3.​Decision-Making and Trade-Off

	4.3.​PROPOSED DESIGN
	4.3.1.​Overview
	4.3.2.​Detailed Design and Visual(s)
	4.3.3.​Functionality
	4.3.4.​Areas of Concern and Development

	4.4.​TECHNOLOGY CONSIDERATIONS
	4.5.​DESIGN ANALYSIS

	5.​Testing
	5.1.​UNIT TESTING
	5.2.​INTERFACE TESTING
	5.3.​INTEGRATION TESTING
	5.4.​SYSTEM TESTING
	5.5.​REGRESSION TESTING
	5.6.​ACCEPTANCE TESTING
	5.7.​SECURITY TESTING
	5.8.​USER TESTING
	5.9.​RESULTS

	6.​Implementation
	7.​Ethics and Professional Responsibility
	7.1.​AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS
	7.2.​FOUR PRINCIPLES
	7.3.​VIRTUES

	8.​Closing Material
	8.1.​CONCLUSION
	8.2.​REFERENCES
	8.3.​APPENDICES

	9.​Team
	9.1.​TEAM MEMBERS
	9.2.​REQUIRED SKILL SETS FOR YOUR PROJECT
	9.3.​SKILL SETS COVERED BY THE TEAM
	9.4.​PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM
	9.5.​INITIAL PROJECT MANAGEMENT ROLES
	9.6.​TEAM CONTRACT
	9.6.1.​Team Procedure
	9.6.1.1.​Day, time, and location (face-to-face or virtual) for regular team meetings:
	9.6.1.2.​Preferred method of communication updates, reminders, issues, and scheduling (e.g., e-mail, phone, app, face-to-face):
	9.6.1.3.​Decision-making policy (e.g., consensus, majority vote):
	9.6.1.4.​Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be shared/archived):

	9.6.2.​Participation Expectations
	9.6.2.1.​Expected individual attendance, punctuality, and participation at all team meetings:
	9.6.2.2.​Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:
	9.6.2.3.​Expected level of communication with other team members:
	9.6.2.4.​Expected level of commitment to team decisions and tasks:

	9.6.3.​Leadership
	9.6.3.1.​Leadership roles for each team member (e.g., team organization, client interaction, individual component design, testing, etc.):
	9.6.3.2.​Strategies for supporting and guiding the work of all team members:
	9.6.3.3.​Strategies for recognizing the contributions of all team members:

	9.6.4.​Collaboration and Inclusion
	9.6.4.1.​Describe the skills, expertise, and unique perspectives each team member brings to the team:
	9.6.4.2.​Strategies for encouraging and support contributions and ideas from all team members:
	9.6.4.3.​Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a team member inform the team that the team environment is obstructing their opportunity or ability to contribute?):

	9.6.5.​Goal-Setting, Planning, and Execution
	9.6.5.1.​Team goals for this semester:
	9.6.5.2.​Strategies for planning and assigning individual and team work:
	9.6.5.3.​Strategies for keeping on task:

	9.6.6.​Consequences for Not Adhering to Team Contract
	9.6.6.1.​How will you handle infractions of any of the obligations of this team contract?
	9.6.6.2.​What will your team do if the infractions continue?

